70 research outputs found

    The Energy Application Domain Extension for CityGML: enhancing interoperability for urban energy simulations

    Get PDF
    The road towards achievement of the climate protection goals requires, among the rest, a thorough rethinking of the energy planning tools (and policies) at all levels, from local to global. Nevertheless, it is in the cities where the largest part of energy is produced and consumed, and therefore it makes sense to focus the attention particularly on the cities as they yield great potentials in terms of energy consumption reduction and efficiency increase. As a direct consequence, a comprehensive knowledge of the demand and supply of energy resources, including their spatial distribution within urban areas, is therefore of utmost importance. Precise, integrated knowledge about 3D urban space, i.e. all urban (above and underground) features, infrastructures, their functional and semantic characteristics, and their mutual dependencies and interrelations play a relevant role for advanced simulation and analyses. As a matter of fact, what in the last years has proven to be an emerging and effective approach is the adoption of standard-based, integrated semantic 3D virtual city models, which represent an information hub for most of the abovementioned needs. In particular, being based on open standards (e.g. on the CityGML standard by the Open Geospatial Consortium), virtual city models firstly reduce the effort in terms of data preparation and provision. Secondly, they offer clear data structures, ontologies and semantics to facilitate data exchange between different domains and applications. However, a standardised and omni-comprehensive urban data model covering also the energy domain is still missing at the time of writing (January 2018). Even CityGML falls partially short when it comes to the definition of specific entities and attributes for energy-related applications. Nevertheless, and starting from the current version of CityGML (i.e. 2.0), this article describes the conception and the definition of an Energy Application Domain Extension (ADE) for CityGML. The Energy ADE is meant to offer a unique and standard-based data model to fill, on one hand, the above-mentioned gap, and, on the other hand, to allow for both detailed single-building energy simulation (based on sophisticated models for building physics and occupant behaviour) and city-wide, bottom-up energy assessments, with particular focus on the buildings sector. The overall goal is to tackle the existing data interoperability issues when dealing with energy-related applications at urban scale. The article presents the rationale behind the Energy ADE, it describes its main characteristics, the relation to other standards, and provides some examples of current applications and case studies already adopting it

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    The state of the art in the analysis of two-dimensional gel electrophoresis images

    Get PDF
    Software-based image analysis is a crucial step in the biological interpretation of two-dimensional gel electrophoresis experiments. Recent significant advances in image processing methods combined with powerful computing hardware have enabled the routine analysis of large experiments. We cover the process starting with the imaging of 2-D gels, quantitation of spots, creation of expression profiles to statistical expression analysis followed by the presentation of results. Challenges for analysis software as well as good practices are highlighted. We emphasize image warping and related methods that are able to overcome the difficulties that are due to varying migration positions of spots between gels. Spot detection, quantitation, normalization, and the creation of expression profiles are described in detail. The recent development of consensus spot patterns and complete expression profiles enables one to take full advantage of statistical methods for expression analysis that are well established for the analysis of DNA microarray experiments. We close with an overview of visualization and presentation methods (proteome maps) and current challenges in the field

    �ber das Echinopsin

    No full text

    Reconstructing 3D Building Models with the 2D Cadastre for Semantic Enhancement

    No full text
    International audienceVirtual city models are increasingly used in urban land management processes, which involve the use of different sources of spatial information. This heterogeneous data is, however, often complementary and it may be necessary to give the possibility to join information provided by different sources. This paper presents a method to enhance 3D buildings by using usual 2D vectorial polygon database. These polygons may represent districts, building footprints, or any seg-mentation of the urban area that adds information to the city model. The enhancement consists in using this polygon database to split the 3D buildings into a set of city objects where each element possesses a 3D geometry and the semantic information of the polygon it is linked to. In this paper, for an illustration purpose, we will present how to create this link between 3D buildings and the cadastre map, in order to create a set of semantically rich 3D building models
    corecore